
Van Dyke's use of a unique mathematical symbol, mathematical equations and mathematical tables in his own handwriting which appear in BOTH "Silent Weapons" and in his own court filings (indicating BOTH were written by the same person, Van Dyke himself).

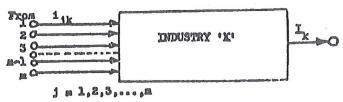
Case: 03-30006, 06/25/2009, ID: 6969490, DktEntry: 19, Page 62 of 90 Clearly, the government legislators regarded \$70,000 per Violation to be a fair market fine value for each Violation of civil rights. Therefore, we can begin the formulation of the damages with Vo = p = \$ 3.26 million. Each three (3) days of incarceration must be justified by a legitimate cause and a legitimate process. The Accumulated Periodic Principal Sigma From Court Filings, The total number of days of unlawful incarcered on and of the seven (7) remaining defendants was (2, sum) $\sum_{i=1}^{n} \frac{1}{n} \frac{1}{n}$ The periodic principal of each three (3) day period is p= > The total Principal Piscalculated as P=np. P= np = (2821) × (\$ 3.26 Million) = \$ 9,196.46 million P= \$ 9.19646 Billion = \$ 9.2 Billion (without interest) A low estimate of an Annuity Value with interest included is given by Annity Estimation = V=P+(3P)RT=P[1+3RT], Where Pis the total Principal (5P) is the average Principle to which the annual (yearly) compound interest Rate Ris applied, and Tistle average number of years of incarceration of the seven (7) unlawfully incorrected defendants in Case# CR96-500(c). page 9 of 16 pages, - The Public Wealth Rebote Trust Fund (2009-)

Sigma From Silent Weapons

which is the general equation of every admittance in the industry circuit.

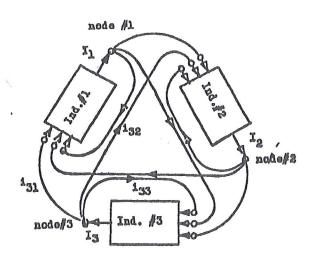
Final Bill of Goods

is called the final bill of goods or the bill of final demand, and is zero when the system can be closed by the evaluation of the technical coefficients of the 'non-productive' industries, government and households. Households may be regarded as a productive industry with labor as its output product.

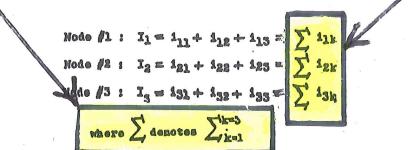

The Technical Coefficients

The quantities y_{jk} are called the technical coefficients of the industrial system. They are admittances and can consist of any combination of three passive parameters, conductance, capacitance, and inductance. Diodes are used to make the flow unidirectional and point against the flow.

- \circ g_{jk} = economic conductance, absorption coefficient
- y_{jk} = economic capacitance, capital coefficient
- $\circ~L_{jk} = economic inductance, human activity coefficient .$

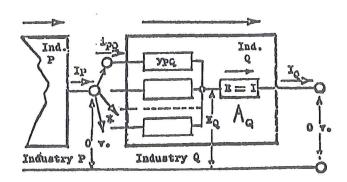

Types of Admittances

Sigma From Silent Weapons



The flow of product from industry #1 (supply) to industry #2 (demand) is denoted by 1_{12} . The total flow out of industry "K" is denoted by I_k (sales, etc.).

A three industry network can be diagrammed as follows:


A node is a symbol of collection and distribution of flow. Node #3 receives from industry #3 and distributes to industries #1 and #3. If industry #3 manufactures chairs, then a flow from industry #3 back to industry #3 simply indicates that industry #3 is using part of its own output product, for example, as office furniture. Therefore the flow may be summarized by the equations:

Sigma From Silent Weapons

Industries fall into three categories or classes by type of output:

- 1. Class #1 Capital (resources)
- 2. Class #2 Goods (commodities or use dissipative)

* - to other industries

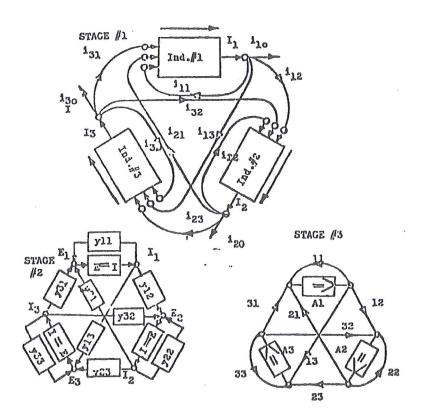
The coupling network Y_{PQ} symbolizes the demand which industry Q makes on industry P. the connective admittance Y_{PQ} is called the 'technical coefficient' of the industry Q stating the demand of industry Q, called the industry of use, for the output in capital, goods, or services of industry P called the industry of origin.

The flow of commodities from industry P to industry Q is given by i_{PQ} evaluated by the formula:

$$i_{PQ} = Y_{PQ} * E_Q$$
.

When the admittance Y_{PQ} is a simple conductance, this formula takes on the common

Sigma From Silent Weapons

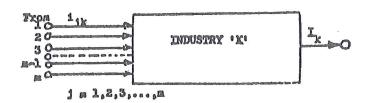

The interconnection of a three industry system can be diagrammed as follows. The blocks of the industry diagram can be opened up revealing the technical coefficients, and a much simpler format. The equations of flow are given as follows:

$$I_{1} = I_{11} + I_{12} + I_{13} + I_{10} = \sum_{1k} I_{1k} + I_{10}$$

$$I_{2} = I_{21} + I_{22} + I_{23} + I_{20} = \sum_{2k} I_{1k} + I_{20}$$

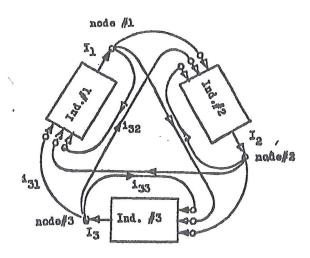
$$I_{3} = I_{31} + I_{32} + I_{33} + I_{30} = \sum_{2k} I_{2k} + I_{30}$$

Stages of Schematic Simplification


Generalization

Sigma From Silent Weapons

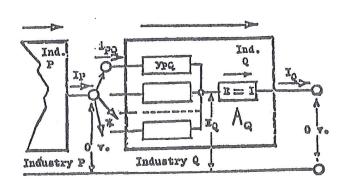
- \circ i_{jk} , the amount of the product of industry j absorbed annually by industry k, and
- $\circ \ i_{jo},$ the amount of the same product j made available for 'outside' use. Then


Substituting the technical coefficiences, y_{jk}

A pure (single output) industry can be represented oversimply by a circuit block as follows:

The flow of product from industry #1 (supply) to industry #2 (demand) is denoted by 1_{12} . The total flow out of industry "K" is denoted by I_k (sales, etc.).

A three industry network can be diagrammed as follows:


A node is a symbol of collection and distribution of flow. Node #3 receives from industry #3 and distributes to industries #1 and #3. If industry #3 manufactures chairs, then a flow from industry #3 back to industry #3 simply indicates that industry #3 is using part of its own output

Tables From Silent Weapons

Three Industrial Classes

Industries fall into three categories or classes by type of output:

- 1. Class #1 Capital (resources)
- 2. Class #2 Goods (commodities or use dissipative)

* - to other industries

The coupling network Y_{PQ} symbolizes the demand which industry Q makes on industry P, the connective admittance Y_{PQ} is called the 'technical coefficient' of the industry Q stating the demand of industry Q, called the industry of use, for the output in capital, goods, or services of industry P called the industry of origin.

The flow of commodities from industry P to industry Q is given by i_{PQ} evaluated by the formula:

$$i_{PQ} = Y_{PQ} * E_Q.$$

When the admittance Y_{PQ} is a simple conductance, this formula takes on the common appearance of Ohm's Law,

$$i_{PQ} = g_{PQ} * I_Q.$$

Tables From Silent Weapons

1
$$I_1 = I_{11} + I_{12} + I_{13} + I_{10} = I_{12} + I_{13} + I_{10} = I_{12} + I_{12} + I_{23} + I_{20} = I_{32} + I_{31} + I_{32} + I_{33} + I_{30} = I_{32} + I_{31} + I_{32} + I_{33} + I_{30} = I_{31} + I_{32} + I_{33} + I_{33} + I_{30} = I_{31} + I_{32} + I_{33} + I_{33} + I_{33} + I_{34} + I_$$

Stages of Schematic Simplification

Case: 03-30006, 06/25/2009>WOOD 1949D, TOKKETHY JUST, Page 69 of 90 Derivation of Formulas Tables From Court Filings $V_{i} = V_{0} + V_{0}r + p \quad V_{2} = V_{i} + V_{i}r + p$ $V_{j} = p + pr + p \quad V_{2} = V_{i}(1+v) + p$ $V_2 = [p(1+r)+p](1+r)+p$ $V_2 = p(1+r)^2 + p(1+r)+p$ V2= p(i+r)2+p(r+r)+p The pattern is \V==p(0+1)+p(1+1)+1+1...+p(1+1)+p We multiply every term of both sides of the equation by (14r). Ve(1+r) = p(1+r)*(1+r)+p(1+r)*-(1+r)+...+p(1+r)(1+r)+p(1+r) or V+(1+r)=p(1+r)6+1+p(1+n)t+...+p(1+r)2+p(1+r) We add and sultract of to the right hand side, and bracket the modele terms: V+(1+r)=p(1+r)+++ p(1+r)++ 1-1+ p(1+r)2+p]-p we see that the quantity in the brackets is by quen above, so V+ Virzp(1+1) 6+1+[V+]-p Subtracting V+ from both sides of the equation we get.

Vor = p(1+r) b+1 - p or V+= p(1+r)t+1-17 Which is the Stepperiodie Compound interest Annuity Formula Attached is the two (2) page writing titled THE ECONOMO ENGINEERING HANDBOOK [HOW TO CREATE CURRENCIES FOR LOCAL COMMUNITIES (2002)] Tyle Hartfird Van Dyke, Fr.

Jage 16 of 16 pages - The Public Wealth Repate Trust Fund (04 MTF)

Revoyeon

Table of PBt=V-for B=1.01, P=#1.00

			1	bleof	(190	Permon	th-	12,68%	LPR)			
	*	V	8	V	*	V	t	V	1 \$	V	古	V
	0	1,0000	24	1.2697	48	1.6122	72	2,0470	96	2.5992	120	3,3003
1mo.	1	1.0100	25	1,2824	49	1,6283	73	2:0675	97	2.6252	121	3,3333
	2	1.0201	26	1.2952	50	1.6446	74	2.0882	98	2.6515	122	3,3667
	3	1.0303	27	1.3082	51	46610°	75	2,1091	99	2,6780	123	3.4003
	4	1.0406	28	1,3212	52	1,6776	76	2,1302	100	2.7048	124	3,4343
	5	1.0510	29	1.3345	53	1,6944	77	2.1515	101	2.7318	125	3,4687
	6	1.0615	30	1,3478	54	1.714	78	2,1730	102	2.7591°	126	3,5034
٠٠٠٠٠ م	7	1,0721	31	1.3613	55	1.7285	79	2.1947	103	2.7867°	127	3,5384
and	8	1.0828	32	1.3749	56	1.7458	80	2.2167	104	2.8146	128	3,5738
3"	9	1.0936	33	1.3856	57	1.7632	81	2.2388	105	2.8427°	129	3.6095
20	10	1.1046	34	1.4025	58	1.7808	82	2.2612	106	2.8712	130	3,6456
6/14R.	11	1.1156	35	1.4166	59	1.7987	83	2,2838	107	2,8999	131	3,6821
12 mo	12	1.1268	36	1.4307		1.8166	84	2,3067	108	2.9289		3.7189
the	13	1./380	37	1,4450		1.8348	85	2,3297	109	287582	/33	37561
	14	1,1494	38	1.4595		1.8532	86	2,3530°	110	2.9877	134	3,7936
	15	1.1609	39	1,4741	63	1.8717	87	23766	111	3.0176		3,8316
	16	1.1725		1.4888	64	1.8904	88	2,4003	112	3.0478		3,8699
	17	E11843	41	1.5037°	65	1.9093	89	2,4243	113	30783	137	3.9086
	18	1.1961		1,5/87	66	1.9284		2,4486		3.1091		3,9477
		1.2081		1.5339	67	49477		2,4731		3.1401		3,9872
	20	1.2201	44	1.5493	68	1.9672		2.4978	116	3.1715	140	4,0270
	21	1.2323		1-5648	69	1.9868		2.5228	117	3,2033	141	4.0673
	22	1.2447		1.5804	70	2,8067	94	2.5480	118	3.2353		4.1080
	23	1.2571		1.5962	71	7,0268		2.5735			143	4,1491
(27R	24	1.2697	48	1,6122	72	2.0470		4				4.1906
Page 11 of 16 pages - The Public Wealth Rebote Trust Fund (2009-04178)												

Case: 03-30006, 06/25/2009, ID: 6969490, DktEntry: 19, Page 68 of 90

	The longest incarceration is 1630 days = 543 periods
	The 731 day cacareeration is = 243 periods (Ifter 731 days of incarceration interest goes = 300 periods)
	Sorthe interest factor is (1.001) 300=1.349, 639,9= I
	This interest factor can be approximated by
_	(1.001)300 = [(1.001)10]30 = (1.01)30 = 1.3478*
	(See the compound interest table on page 11 at level t= 30 months)
1	Following this same proceedure to calculate the
	Tables From Court Filings
	Incareer Incarcer Value of 3-Day Interest Account action alion Annuity period to Factor Value
	(Sentence) (Sentence) in end of for to to in days in (3) day millions longest 3-day to = 543

						0	
	Incareer-	Incarcer-	Value of Annuity	3-Day period to	Interest Factor	Ae count Value	
		(Sentence) 16 (3) day	millions	end of Longest	for tr 3-day	to to =543	
	4	periods	of dollars	incarcer- atton	periods	three (3)	
				=543-ts		periods	
	d	tsn	Vt.	tr	(1+1)te	VF	
-	731	243	900.31	300	1.3496	1215,09	
	731	243	900.31	300	1.3496	1215,09	
	1192	397	1592.57	146	1.1571	1842,77	
-	1219	406	1636,42	137	1.1467	1876.55	
	1336	445	1831.04	098	1.1029	2019.46	
-	1624	541	2343.71	002	1.0020	2348.40	
	1630	543	2354.92	000	1.0000	2354.92	
AND DESCRIPTION OF THE PERSON.	8463	28.18	11559.28	983	<totals→< td=""><td>12,872M.</td><td></td></totals→<>	12,872M.	
NAME AND PARTY AND PARTY.	 In 2003 au	bout 900 de	us after t	he last d	ay of blo	12.872B.	

In 2003 about 900 days after the last day of the 1281215.

that my process had a value of 18 Billion dollars. This is also

300 periods, gwin I=13478, and 13478 x 12,8728 x 17,348 Billion,

page 15 cop to pages - The Public Wealth Rebate Trust (Second out 82)